

Optimization and Application of the Endosomal Escape Vehicle (EEV™) Platform for Enhanced Delivery of Oligonucleotides to Skeletal and Cardiac Muscle

INTRODUCTION

- Currently approved phosphorodiamidate morpholino oligomer (PMO) therapies for Duchenne muscular dystrophy (DMD) were designed to restore the messenger RNA (mRNA) reading frame and produce • EEV constructs and PMOs were prepared by solid phase synthesis following established procedure and conjugated by amide bond formation or click chemistry followed by ion exchange chromatography dystrophin by exon skipping, but have shown modest improvements.¹ and/or reverse phase liquid chromatography.6
- Intracellular delivery of oligonucleotides is challenging because of poor cell entry and limited escape from the endosome in the target cell.^{3,4}
- To enhance PMO delivery to target tissues, we designed a family of proprietary cyclic cell–penetrating peptides that form the core of the Endosomal Escape Vehicle (EEV^M) platform⁵ (Figure 1). • The medicinal chemistry of cell-penetrating peptides is integral to their ability to efficiently deliver therapeutic cargo. As such, EEV peptides have been optimized for the efficient delivery of antisense oligonucleotides to target cells and tissue.⁶
- Here, we examined the EEV-PMO approach in multiple preclinical models of DMD.

OBJECTIVE

- To assess the therapeutic potential of exon-skipping EEV-PMO constructs in preclinical models of Duchenne muscular dystrophy.

EEV, Endosomal Escape Vehicle; PMO, phosphorodiamidate morpholino oligomer; ns, not significant.

ACKNOWLEDGMENTS

This research was funded by Entrada Therapeutics, Inc (Boston, MA). The del44hDMD.mdx and the hDMD.mdx mouse models were all acquired and licensed from Leiden University (Leiden, The Netherlands). The authors would like to thank Aji Nair for assistance with poster development (Entrada Therapeutics, Inc). Editorial and studio support for this poster was provided by Ashfield MedComms (US), an Inizio company, and was funded by Entrada Therapeutics, Inc. References: 1. EXONDYS 51[®] Prescribing Information. 2. VILTEPSO[®] Prescribing Information. 3. Qian Z. Biochemistry. 2016. 4. Sahni A. ACS Chem Biol. 2020. 5. Qian Z, et al. ACS Chem. 2013. 6. Li X, et al. Mol Ther Nucleic Acids. 2023. 7. Sazani P, et al. Nat Biotechnol. 2002.

Xiang Li, Patrick G. Dougherty, Mahboubeh Kheirabadi, Nelsa L. Estrella, Ajay Kumar, Amy N. Hicks, Ashweta Sahni, Mark Wysk, Kimberli J. Kamer, Wenlong Lian, Nanjun Liu, Ning Li, Matthew Streeter, Kyle Totaro, Ming Zhou, Christopher M. Brennan, Anushree Pathak, Catherine Kugler, Alison Burman, Sara L. Blake, Mohanraj Dhanabal, Andy Stadheim, Mahasweta Girgenrath, Ziqing Leo Qian

Entrada Therapeutics, Boston, MA

MATERIALS & METHODS

- mdx mice carry a nonsense mutation in DMD exon 23 and were evaluated for exon skipping 7 days following a single 20-mg/kg intravenous (IV) injection of PMO-23, EEV1-PMO-23, or EEV2-PMO-23 (**Figure 2B**).
- EGFP-654 mice⁷ were administered three once-weekly IV doses of 10 mg/kg PMO654 or EEV3-PMO654 and were evaluated for EGFP mRNA splice correction 1 week after the last dose (Figure 2D).
- del44hDMD.mdx are human dystrophin (hDMD)-expressing mice engineered with a deletion in the hDMD exon 44 transgene on the mdx background, resulting in an exon 45 skip-amenable mouse line. These mice were treated with a human exon 45–skipping EEV-PMO construct (EEV-PMO-45) (Figure 4).
- EEV-PMO-23, a DMD exon 23-skipping PMO conjugated to the EEV platform, was administered IV every 6 weeks (Q6W) in D2-mdx mice (Figure 3). These mice carry a nonsense mutation in DMD exon 23.
- Exon-skipping efficiency was analyzed by reverse-transcriptase polymerase chain reaction (PCR) and LabChip (Perkin Elmer, Santa Clara, CA) (Figures 2 and 3) or reverse-transcriptase digital droplet PCR (Figure 4). Dystrophin restoration was evaluated by Simple Western Jess (Bio-Techne, Minneapolis, MN).

• The EEV platform efficiently delivered exon-skipping PMOs to skeletal and cardiac muscle in preclinical models of DMD. • These results underscore the importance of the medicinal chemistry of cell-penetrating peptides for successful delivery of PMOs to target tissues.

RESULTS

CONCLUSIONS

- exon 44 and 45 skip–amenable DMD, respectively.

• These findings support earlier studies demonstrating the preclinical efficacy of ENTR-601-44 and ENTR-601-45, and support further study of these EEV-PMO constructs in patients with

• A phase 1 clinical trial of ENTR-601-44 in healthy subjects is ongoing with expected completion in the second half of 2024.