

Endosomal Escape Vehicle (EEV[™]) -Oligonucleotide Conjugates Produce Exon Skipping and Dystrophin Production in Preclinical Models of Duchenne Muscular Dystrophy

Mahasweta Girgenrath, PhD Vice President, Neuromuscular Therapeutics

Frontiers in Myogenesis Conference 2023 November 10, 2023

THE NEED FOR INTRACELLULAR THERAPEUTICS

Approximately 75% of all disease-causing targets are intracellular and difficult to reach, representing a significant issue when developing effective therapies

The Endosomal Escape Vehicle (EEV[™]) Platform aims to solve the fundamental problem: Lack of efficient cellular uptake and escape from the endosome

Frontiers in Myogenesis

ENDOSOMAL ESCAPE VEHICLE (EEV[™]) PLATFORM

Entrada seeks to solve a fundamental problem: lack of efficient cellular uptake and escape from the endosome; Both are critical to intracellular target engagement and therapeutic benefit

- Unique chemistry results in improved uptake and endosomal escape
- Cyclic structure designed to extend half life and increase stability
- Phospholipid binding potentially enables broad biodistribution to all cells
- Mechanism of internalization conserved across species

A BROADLY APPLICABLE PLATFORM

Entrada has demonstrated intracellular uptake of unique moieties ranging from 1 kDa to 600 kDa

Frontiers in Myogenesis

EEV LIBRARY: SCREENING AND OPTIMIZATION

Discovery Engine for Intracellular Therapeutics

- Cyclic peptide library design and combinatorial synthesis to generate EEV library
- Delivery and counter-screening assays enabled for in vitro high throughput screening
- Functional screening of lead EEVs in vivo to select for pharmacodynamic activity in target tissues
- Optimize linker & conjugation chemistry for desired therapeutic modality

Screening Cascade for EEV Candidates

Chemically-diverse >500 member EEV library

5

Entrada's EEV-therapeutics can be designed to enhance functional delivery to target tissues

entrada

Frontiers in Myogenesis

•

p<0.01. **p<0.0001 vs. PMO654. These studies used EEV3-PMO654. Values are shown as mean ± standard deviation. 1. Li. X. et al. Mol. Ther. Nucleic Acids 2023. EEV. endosomal escape vehicle; EGFP, enhanced green fluorescent protein; PMO, phosphorodiamidate morpholino oligomer.

DUCHENNE MUSCULAR DYSTROPHY

SIGNIFICANT THERAPEUTIC NEED EXISTS WITHIN A VALIDATED DUCHENNE MARKET

Duchenne is caused by **mutations in the DMD gene**, **which lead to a lack of functional dystrophin**, causing progressive loss of muscle function throughout the body Exon skipping therapeutics have been approved based on modest improvement in dystrophin levels ranging from ~1% to 6%⁴⁻⁷

 Parent Project Muscular Dystrophy. https://www.parentprojectmd.org/about-duchenne/. Accessed August 18, 2023. 2. Europeans Medicines Agency. https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3202375. Accessed August 18, 2023. 3. Bladen, C.L. et al. *Hum Mutat.* 2015. 4. AMONDYS 45 PI. 5. VILTEPSO PI. 6.
VYONDYS 53 PI. 7. EXONDYS 51 PI. DMD, Duchenne muscular dystrophy; EEV, endosomal escape vehicle

REPEAT EEV-PMO-23 TREATMENT IN D2-mdx MICE

Robust exon 23 skipping after 4 monthly IV doses of EEV-PMO-23 in D2-*mdx* mice

Broad dystrophin expression and restoration of muscle integrity after four monthly IV doses of EEV-PMO-23 in D2-*mdx* mice

entrada

Wild-Type Vehicle PMO-23 EEV-PMO-23 Grading of the second se

 D2-mdx mice (male, n=6-7) were treated with 4 monthly doses of either vehicle, 20 mg/kg unconjugated PMO-23 or 20 mg/kg PMO-23 equivalent of EEV-PMO-23, and the data were collected ~4 weeks after the last dose.

Frontiers in Myogenesis

****p<0.0001. Values are shown as mean ± standard deviation. **D2-mdx** is a DMD mouse model with a nonsense mutation in *DMD* exon 23 (Coley, W.D. et al. *Hum. Mol. Genet.* 2016). Li, X. et al. *Mol. Ther. Nucleic Acids* 2023. **EEV**, endosomal escape vehicle; **DMD**, Duchenne muscular dystrophy; **IV**, intravenous; **ns**, not significant; **PMO**, phosphorodiamidate morpholino oligomer; **PMO-23**, mouse *DMD* exon 23 skipping phosphorodiamidate morpholino oligomer.

REPEAT EEV-PMO-23 TREATMENT RESULTS IN CK CORRECTION AND FUNCTIONAL IMPROVEMENT

Repeat EEV-PMO-23 treatment normalized serum CK levels and showed significant improvements in muscle function when compared to PMO alone after four monthly IV doses in D2-*mdx* mice

*p<0.05, **p<0.01, ****p<0.0001

)entrada

 D2-mdx mice (male, n=6-7) were treated with 4 monthly doses of either vehicle, 20 mg/kg PMO-23 or 20 mg/kg PMO-23 equivalent of EEV-PMO-23, and the data were collected ~2 weeks after the last dose

Values are shown as mean ± standard deviation. **D2-mdx** is a DMD mouse model with a nonsense mutation in *DMD* exon 23 (Coley, W.D. et al. *Hum. Mol. Genet.* 2016). The D2-*mdx* model is on a DBA/2J background and better recapitulates disease pathology (Fukada, S. et al. *Am. J. Path.* 2010). **CK**, creatine kinase; **EEV**, endosomal escape vehicle; **IV**, intravenous; **ns**, not significant; **PMO**, phosphorodiamidate morpholino oligomer; **PMO-23**, mouse *DMD* exon 23 skipping phosphorodiamidate morpholino oligomer.

REPEAT EEV-PMO-23 TREATMENT RESULTS IN IMPROVED MUSCLE CONTRACTILITY

Bi-weekly treatment with EEV-PMO-23 improved skeletal muscle contractile force in D2-mdx mice and was not significantly different than wild-type mice at Week 12

Repeated Muscle Contraction Longitudinal Tetanic Force Week 12 Specific Force ns 120 12 ¬ - Wild Type - Wild Type ** * - D2-mdx + Vehicle - D2-*mdx* + Vehicle 250 D2-mdx + EEV-PMO-23 D2-mdx + EEV-PMO-23 100 Peak Tetanic Force (mN-m) 200 Specific Force (mN/mm²) Force (% Baseline) 8 80 * 150 60 **** 100 40 50 20 0 0 0 12 0 2 10 Wild Type Vehicle EEV-PMO-23 0 Time (Weeks) **ECC Number** D2-mdx

Frontiers in Myogenesis

Data are shown as mean ± standard error of mean. D2-*mdx* mice were treated with vehicle or 80 mg/kg weekly EEV-PMO-23. Muscle contractility was assessed via isometric force generated by tetanic contraction of plantar flexor muscle group and ECC generated by repeated tetanic contraction of TA muscle. ECC, eccentric force; EEV, endosomal escape vehicle; IV, intravenous; ns, not significant; PMO, phosphorodiamidate morpholino oligomer; PMO-23, mouse *DMD* exon 23 skipping phosphorodiamidate morpholino oligomer.

*p<0.05, **p<0.01, ****p<0.0001

ENTR-601-44

ENTR-601-44 IN PATIENT-DERIVED MYOTUBES

Robust dose-dependent exon 44 skipping and dystrophin protein production were observed in DMD patient-derived muscle cells treated with clinical candidate, ENTR-601-44

Frontiers in Myogenesis

****p<0.0001 vs untreated DMDΔ45; Values shown as mean ± standard deviation. DMDΔ45 are immortalized myoblasts from DMD patients harboring an out-of-frame exon 45 deletion and further differentiated into myotubes. ENTR-601-44 is a DMD exon 44 skipping EEV-oligonucleotide conjugate. DMD, Duchenne muscular dystrophy; EEV, endosomal escape vehicle; HSP90, heat shock protein 90.

EXON 44 SKIPPING AND DYSTROPHIN RESTORATION WITH A HUMAN DMD CELL MODEL

entrada

Frontiers in Myogenesis

Immortalized patient-derived skeletal myoblasts with exon 45 deletion in the *DMD* gene were engineered into EMTs (MantarrayTM system, Curi Bio, Seattle, WA). EMTs were treated with EEV-PMO for 24 hours and analyzed at 1-, 4-, and 6-weeks post-washout. Normal cells from non-DMD individuals were used as controls. Dystrophin quantified using RT-PCR (N=8). Data are shown as mean ± SD; Ordinary 1-way ANOVA and Dunnett's multiple comparison test. Cross-sectional images (40X cropped) of EMTs (N=4). Red, dystrophin; blue, DAPI. **EMT**, engineered muscle tissue; **Med**, medium.

ENTR-601-44 IN HUMAN DMD MICE (hDMD)

A single IV dose of ENTR-601-44 resulted in high and durable levels of exon 44 skipping across major muscle groups in hDMD mice for at least 12 weeks

• Post single IV dosage of 60 mg/kg (PMO equivalent), robust exon skipping was observed in ENTR-601-44-treated hDMD mice

Frontiers in Myogenesis

hDMD transgenic mice express full-length human dystrophin gene ('t Hoen, A.C. et al. *J. Biol. Chem.* 2008). Values are shown as mean ± standard deviation. ENTR-601-44 is a DMD exon 44 skipping EEV-oligonucleotide conjugate. DMD, Duchenne muscular dystrophy; EEV, endosomal escape vehicle; hDMD, human Duchenne muscular dystrophy; IV, intravenous; PMO, phosphorodiamidate morpholino oligomer.

ENTR-601-44 NON-HUMAN PRIMATES (NHP)

A single IV dose of ENTR-601-44 resulted in robust exon skipping in both skeletal and cardiac muscles in NHP, as well as prolonged duration of effect for at least 12 weeks

Duration of Effect in NHP Biceps for at Least 12 Weeks

- At 7 days post IV infusion of 30 mg/kg (PMO equivalent), robust exon 44 skipping across different muscle groups isolated from the ENTR-601-44-treated NHP
- Post IV infusion of 35 mg/kg (PMO equivalent), robust exon 44 skipping observed in biceps in the ENTR-601-44-treated NHP (n=3 per cohort) for at least 12 weeks

ENTR-601-45

ENTR-601-45 IN SKELETAL MUSCLE CELLS

ENTR-601-45 produced dose-dependent dystrophin restoration in patient-derived skeletal muscle cells

entrada

• DMD patient-derived skeletal muscle cells (DMDΔ46-48, n=6) were treated with ENTR-601-45 for 24 hours and analyzed 5 days later.

Frontiers in Myogenesis

Values are shown as mean ± standard deviation. **ENTR-601-45** is a DMD exon 45 skipping EEV-oligonucleotide conjugate. **DMDΔ46-48** induced pluripotent stem cell-derived skeletal muscle cells from an exon 45 skip amenable DMD patient harboring an exon 46-48 deletion mutation were treated for 24 hours and analyzed after 5 days of differentiation. **DMD**, Duchenne muscular dystrophy; **EEV**, endosomal escape vehicle; **iPSC**, induced pluripotent stem cells; **PMO**, phosphorodiamidate morpholino oligomer.

ENTR-601-45 IN CARDIAC MUSCLE CELLS

entrada

• DMD patient-derived cardiac muscle cells (DMDΔ46-48, n=4) were treated with ENTR-601-45 for 24 hours and analyzed 48 hours later.

Frontiers in Myogenesis

Values are shown as mean \pm standard deviation. **ENTR-601-45** is a DMD exon 45 skipping EEV-oligonucleotide conjugate. **DMD** Δ 46-48 induced pluripotent stem cell-derived cardiac muscle cells from an exon 45 skip amenable DMD patient harboring an exon 46-48 deletion mutation were treated for 24 hours and analyzed 48 hours later. **DMD**, Duchenne muscular dystrophy; **EEV**, endosomal escape vehicle; **iPSC**, induced pluripotent stem cells; **PMO**, phosphorodiamidate morpholino oligomer.

ENTR-601-45 TARGET ENGAGEMENT IN hDMD MICE

A single dose of ENTR-601-45 delivered up to a two-fold improvement in exon skipping when compared to an equivalent dose of the same EEV conjugated to a casimersen sequence

Tibialis Anterior Diaphragm Heart **** 100 100 25 **** *** **** 80 80 20 **** Exon skipping (%) 0 5 Exon skipping (%) Exon skipping (%) 60 60 40 40 20 20 5 Vehicle EEV-PMO45, ENTR-601-45, ENTR-601-45, Vehicle EEV-PMO45, ENTR-601-45, ENTR-601-45, Vehicle EEV-PMO45, ENTR-601-45, ENTR-601-45. 22.5 mg/kg 45 mg/kg 22.5 mg/kg 45 mg/kg 22.5 mg/kg 45 mg/kg 45 ma/ka 45 mg/kg 45 ma/ka

EEV-PMO45 (EEV construct conjugated to casimersen sequence)

ENTR-601-45 (EEV construct conjugated to exon 45 skipping PMO)

*p<0.05, **p<0.01, ****p<0.0001 vs. Vehicle

entrada

Values are shown as mean ± standard deviation (n=3-5). **ENTR-601-45** is a DMD exon 45 skipping EEV-oligonucleotide conjugate. **hDMD** transgenic mice express full-length human dystrophin gene ('t Hoen, P.A. et al. *J. Biol. Chem.* 2008). Casimersen is an exon 45 skipping PMO approved in the US. Concentrations provided are PMO equivalent.

DMD, Duchenne muscular dystrophy; EEV, endosomal escape vehicle; hDMD, human Duchenne muscular dystrophy; PMO, phosphorodiamidate morpholino oligomer.

EEV-PMO IN DMD

These results demonstrate that the EEV Platform efficiently delivers oligonucleotides to skeletal and cardiac muscles in preclinical models of Duchenne muscular dystrophy

ENTR-601-44*

- High levels of exon skipping across mdx, D2-*mdx*, human dystrophin (hDMD) mouse and NHP studies
- Exon skipping translates to promising dystrophin production in heart and skeletal muscles
- Dystrophin production observed to result in functional improvement

Entrada received authorization in the U.K. to initiate a Phase 1 clinical trial in healthy volunteers

• First participant was dosed in September 2023 with data anticipated in 2H 2024

ENTR-601-45

- Robust exon skipping and dystrophin protein production in patient-derived cardiac and skeletal muscle cells
- High levels of exon skipping were measured in hDMD mouse heart and skeletal muscle tissue

Entrada is planning for regulatory submission in Q4 2024

 Planning for a direct to MAD trial in Duchenne patients for ENTR-601-45

A DIFFERENTIATED AND EXPANDING PIPELINE

Disease/Condition	Discovery	Lead Optimization	IND Enabling	Clinical	
DMD	ENTR-601-44			First participant dosed in September 2023	
Neuromuscular DM1	ENTR-601-45		On track to file CTA/IND in Q4 2024		
	ENTR-601-50	Clinical candidate selected in Q4 2023; CTA/IND filing is expected in 2025			
	Exon 51				
	ENTR-701		VERTEX	Partnered with Vertex	
POMPE	ERT/Oligonucleotide				
Beyond Neuromuscular	Immunology				
	Ocular				
Platform Expansion	Gene editing				
	mRNA delivery				
	Antibody/Protein				

THANK YOU

Scan the QR code for access to our recent publications and presentations as well as career opportunities